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Notable physicochemical characteristics of ionic clathrate hy-
drates have been introduced in several studies.1-6 Unlike nonionic
clathrate hydrates stabilized solely by van der Waals interaction,
ionic clathrate hydrates are greatly affected by ionic interaction
between a cationic or anionic guest and the surrounding host lattice
balanced by counterions.7 The ionic guest molecules tend to readily
form the clathrate or “clathrate-like” structures with water depending
on the existence of OH-, but their exposure to nonionic guest
molecules (NIGM) occasionally induces structural transformation
through their occupation in cages.3 In particular, ionic clathrate
hydrates tend to exhibit the extraordinary physicochemical behavior
in cage-stacked channels.3,4 In the icy matrix of the ionic clathrate
hydrate, two unique features merit examination: one is the ionic
conductivity enhancement appearing from the ionic behavior of the
charged host, and the other is the new vacant cage creation by
structural transformation.

Here, a key question arises as to the charge interaction between
the NIGM and charged host matrix surrounding the NIGM. The
charged diatomic molecules appear often as intermediates of a
cleavage reaction,8-10 and thus, their stable positioning might
provide an active role in implementing a specific function in icy
clathrate hydrate materials. We attempt to answer this question
through a close comparison of the magnetic and spectroscopic
patterns of (1) nonionic tetrahydrofuran (THF) + NIGM and (2)
ionic tetramethylammonium hydroxide (Me4NOH) + NIGM clath-
rate hydrates. For potential NIGM, two homomolecular diatomic
molecules of H2 and N2 with D∞h symmetry were used. These
molecules are known to reveal the diamagnetic electron configu-
ration because their total spin and orbital angular momentums are
zero.11

First, the isothermal M-H curves of (THF + NIGM) clathrate
hydrate (NIGM ) H2 and N2), which has a structure-II (sII) cubic
Fd3m structure,7,12 were measured at 1.9 K, and the results are
shown in Figure 1a and 1b.13,14 Here, the magnetization value of
pure THF clathrate hydrate (Figure S1) was subtracted to determine
the net magnetic behavior representing only the NIGM effects.
Unexpectedly, the magnetic signals induced by the secondary guest
of NIGM do not exhibit diamagnetics, but instead weak paramag-
netics, leading to exhibiting the field-induced saturation behavior,
which might be due to quite small charge transfers of about -0.01
e from water molecules in a neutral host lattice.15

Meanwhile, the (Me4NOH + NIGM) clathrate hydrate exhibits
the dual feature of a proton-deficient anionic host lattice and
structural transformation.3 Because the proton-deficient site is
disordered, the negative charge of OH- is delocalized to the whole
host lattice.1 For comparison, the electron state of NIGM is also
examined through magnetization measurements of the (Me4NOH

+ NIGM) clathrate hydrate under strong magnetic fields. Here, we
might conjecture that the magnetic behavior of secondary guests
in the ionic clathrate hydrates appears to be quite similar to that in
the nonionic clathrate hydrates if both crystal structures are the
same and the van der Waals interaction only prevails in a cage.
We note that the (Me4NOH + NIGM) clathrate hydrate was found
to have sII cubic Fd3m structure when the hydration number per
one Me4NOH is 16 (see the Supporting Information for powder
X-ray diffraction patterns).16 The isothermal M-H curves of
(Me4NOH + NIGM) clathrate hydrate measured at 1.9 K are shown
in Figure 1a and 1b.13 As treated in (THF + NIGM), the
magnetization value of Me4NOH-16H2O (Figure S1) was sub-
tracted from each curve to determine the net magnetic behavior of
NIGM only. The magnetic moment of (Me4NOH + H2) clathrate
hydrate significantly increases up to 0.062 µB per one H2 at 7 T,
which is about 7 times higher than that of (THF + H2) clathrate
hydrate (Figure 1a). Obviously, this increase is not due to the
proton-deficient anionic host or the Me4N+ captured into a cage
because the magnetization value of Me4NOH-16H2O, which does
not contain NIGM of H2, is lower than that of THF-17H2O as
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Figure 1. M-H curves of cubic Fd3m (Me4NOH + NIGM) clathrate
hydrates (red lines) and (THF + NIGM) clathrate hydrates (blue lines)
measured at 1.9 K. NIGM ) (a) H2 and (b) N2.
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shown in Figure S1. Therefore, this unexpectedly enhanced
magnetic moment strongly suggests that some of the diamagnetic
H2 molecules change to paramagnetic ones by either losing an
electron for a cation or gaining an electron for an anion. One H2

guest molecule is surrounded by a hydrogen-bonded anionic host
cage, and thus, some H2 tends to be changed into H2

- by a charge
transfer of -0.062 e per H2 from the host lattice. On the other
hand, the magnetic moment of N2 does not significantly increase
when compared to (THF + N2) clathrate hydrate (Figure 1b). This
discrepancy is quite interesting because the charge transfer occurring
in the anionic host structure is considered to be affected by the
molecular characteristics of NIGM, even though the NIGM of H2

and N2 have similar diamagnetic electron configurations.

This charge transfer phenomenon occurring in ionic clathrate
hydrate was checked using Raman spectroscopy. The charge
transferred to diatomic NIGM tends to cause the bond-length
elongation, exerting influence on the vibrational frequency of
NIGM.11,17 In Figure 2a, the Raman spectra of nonionic (THF +
H2) and ionic (Me4NOH + H2) hydrates are shown, where a single
peak appearing in each spectrum represents the stretching frequency
of enclathrated H2 in each hydrate. Although the previous well-
defined Raman study for hydrogen hydrate confirms the double
peaks of H2,

18 this peak pattern does not always appear because of
its dependence on the measurement conditions such as temperature
and pressure.19 Close comparison of the two peaks represented in
Figure 2a indicates the existence of a significant difference (about
4 cm-1) of the enclathrated H2 vibrational mode between nonionic
and ionic clathrate hydrates. To confirm whether or not this
difference possibly comes from an instrumental measuring error,
we attempted to examine the Raman spectrum of the mixture that
contains an equal amount of both nonionic and ionic clathrate
hydrates and observed two split peaks (Figure S4a). Accordingly,
together with the discrete magnetic patterns (Figure 1a), the Raman
shift difference implying the bond elongation of H2 strongly
supports the electron behavior that the charge transfer arises in the
crystalline structure of ionic clathrate hydrate (Figure 2c). Raman
analysis for N2 was also attempted (Figure 2b and S4b), but a
significant peak difference was not observed. Thus, the bond
elongation directly caused by N2 is hardly expected because of the
absence of charge transfer even in an ionic hydrate system, which
matches well with the corresponding magnetic moment (Figure 1b).

Thus, both magnetic and spectroscopic patterns of H2 and N2 imply
that the charge transfer phenomenon occurs in ionic clathrate
hydrate, following the NIGM-specific magnetic behavior. This
means that the charge transfer degree is substantially influenced
by the unique properties of NIGM such as molecular electron
affinity or electron-transfer kinetics in the complex host water
framework.

The present findings on the magnetic and spectroscopic properties
of NIGM in ionic clathrate hydrate might provide meaningful
information on the unrevealed nature of host-guest interactions in
solid ionic clathrate hydrate, possibly opening up potential applica-
tion fields such as solid electrolytes by ion transport and proton
conductivity promotion. However, this preliminary work, which
primarily focuses on the charge transfer phenomenon, only provides
a few fragments of physicochemical characteristics of ionic clathrate
hydrates, and thus, more extensive research should be carried out
for a better understanding at the atomic and molecular levels.
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Figure 2. Raman spectra of (THF + NIGM) hydrate and (Me4NOH +
NIGM) hydrate for NIGM stretching region. NIGM ) (a) H2 and (b) N2.
(c) Charge transfer from anionic host lattice to NIGM.
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